Prime numbers are positive integers greater than 1 that lack divisors other than 1 and themselves. In simpler terms, a prime number is a natural number that cannot be generated by multiplying two smaller natural numbers. Notable examples of prime numbers include 2, 3, 5, 7, 11, 13, and so forth. For a comprehensive list, you can check all prime numbers ranging from 1 to 5000.
A more formal definition is as follows: A positive integer p is classified as prime if its sole positive divisors are 1 and p itself. Conversely, if a positive integer n possesses divisors beyond 1 and itself, it is termed a composite number. For instance, 2 and 3 are prime numbers because their only divisors are 1 and 2, and 1 and 3, respectively. On the other hand, 4 is not a prime number as it has divisors 1, 2, and 4.
Prime numbers hold a top position in number theory and find applications across various fields, including cryptography, computer science, and mathematics. The distribution of prime numbers, a intricate subject, has captivated mathematicians for centuries.
List of Prime Numbers from 1 to 5000 – Prime Numbers Explained
| S.No | Prime Number |
|---|---|
| 1 | 2 |
| 2 | 3 |
| 3 | 5 |
| 4 | 7 |
| 5 | 11 |
| 6 | 13 |
| 7 | 17 |
| 8 | 19 |
| 9 | 23 |
| 10 | 29 |
| 11 | 31 |
| 12 | 37 |
| 13 | 41 |
| 14 | 43 |
| 15 | 47 |
| 16 | 53 |
| 17 | 59 |
| 18 | 61 |
| 19 | 67 |
| 20 | 71 |
| 21 | 73 |
| 22 | 79 |
| 23 | 83 |
| 24 | 89 |
| 25 | 97 |
| 26 | 101 |
| 27 | 103 |
| 28 | 107 |
| 29 | 109 |
| 30 | 113 |
| 31 | 127 |
| 32 | 131 |
| 33 | 137 |
| 34 | 139 |
| 35 | 149 |
| 36 | 151 |
| 37 | 157 |
| 38 | 163 |
| 39 | 167 |
| 40 | 173 |
| 41 | 179 |
| 42 | 181 |
| 43 | 191 |
| 44 | 193 |
| 45 | 197 |
| 46 | 199 |
| 47 | 211 |
| 48 | 223 |
| 49 | 227 |
| 50 | 229 |
| 51 | 233 |
| 52 | 239 |
| 53 | 241 |
| 54 | 251 |
| 55 | 257 |
| 56 | 263 |
| 57 | 269 |
| 58 | 271 |
| 59 | 277 |
| 60 | 281 |
| 61 | 283 |
| 62 | 293 |
| 63 | 307 |
| 64 | 311 |
| 65 | 313 |
| 66 | 317 |
| 67 | 331 |
| 68 | 337 |
| 69 | 347 |
| 70 | 349 |
| 71 | 353 |
| 72 | 359 |
| 73 | 367 |
| 74 | 373 |
| 75 | 379 |
| 76 | 383 |
| 77 | 389 |
| 78 | 397 |
| 79 | 401 |
| 80 | 409 |
| 81 | 419 |
| 82 | 421 |
| 83 | 431 |
| 84 | 433 |
| 85 | 439 |
| 86 | 443 |
| 87 | 449 |
| 88 | 457 |
| 89 | 461 |
| 90 | 463 |
| 91 | 467 |
| 92 | 479 |
| 93 | 487 |
| 94 | 491 |
| 95 | 499 |
| 96 | 503 |
| 97 | 509 |
| 98 | 521 |
| 99 | 523 |
| 100 | 541 |
| 101 | 547 |
| 102 | 557 |
| 103 | 563 |
| 104 | 569 |
| 105 | 571 |
| 106 | 577 |
| 107 | 587 |
| 108 | 593 |
| 109 | 599 |
| 110 | 601 |
| 111 | 607 |
| 112 | 613 |
| 113 | 617 |
| 114 | 619 |
| 115 | 631 |
| 116 | 641 |
| 117 | 643 |
| 118 | 647 |
| 119 | 653 |
| 120 | 659 |
| 121 | 661 |
| 122 | 673 |
| 123 | 677 |
| 124 | 683 |
| 125 | 691 |
| 126 | 701 |
| 127 | 709 |
| 128 | 719 |
| 129 | 727 |
| 130 | 733 |
| 131 | 739 |
| 132 | 743 |
| 133 | 751 |
| 134 | 757 |
| 135 | 761 |
| 136 | 769 |
| 137 | 773 |
| 138 | 787 |
| 139 | 797 |
| 140 | 809 |
| 141 | 811 |
| 142 | 821 |
| 143 | 823 |
| 144 | 827 |
| 145 | 829 |
| 146 | 839 |
| 147 | 853 |
| 148 | 857 |
| 149 | 859 |
| 150 | 863 |
| 151 | 877 |
| 152 | 881 |
| 153 | 883 |
| 154 | 887 |
| 155 | 907 |
| 156 | 911 |
| 157 | 919 |
| 158 | 929 |
| 159 | 937 |
| 160 | 941 |
| 161 | 947 |
| 162 | 953 |
| 163 | 967 |
| 164 | 971 |
| 165 | 977 |
| 166 | 983 |
| 167 | 991 |
| 168 | 997 |
| 169 | 1009 |
| 170 | 1013 |
| 171 | 1019 |
| 172 | 1021 |
| 173 | 1031 |
| 174 | 1033 |
| 175 | 1039 |
| 176 | 1049 |
| 177 | 1051 |
| 178 | 1061 |
| 179 | 1063 |
| 180 | 1069 |
| 181 | 1087 |
| 182 | 1091 |
| 183 | 1093 |
| 184 | 1097 |
| 185 | 1103 |
| 186 | 1109 |
| 187 | 1117 |
| 188 | 1123 |
| 189 | 1129 |
| 190 | 1151 |
| 191 | 1153 |
| 192 | 1163 |
| 193 | 1171 |
| 194 | 1181 |
| 195 | 1187 |
| 196 | 1193 |
| 197 | 1201 |
| 198 | 1213 |
| 199 | 1217 |
| 200 | 1223 |
| 201 | 1229 |
| 202 | 1231 |
| 203 | 1237 |
| 204 | 1249 |
| 205 | 1259 |
| 206 | 1277 |
| 207 | 1279 |
| 208 | 1283 |
| 209 | 1289 |
| 210 | 1291 |
| 211 | 1297 |
| 212 | 1301 |
| 213 | 1303 |
| 214 | 1307 |
| 215 | 1319 |
| 216 | 1321 |
| 217 | 1327 |
| 218 | 1361 |
| 219 | 1367 |
| 220 | 1373 |
| 221 | 1381 |
| 222 | 1399 |
| 223 | 1409 |
| 224 | 1423 |
| 225 | 1427 |
| 226 | 1429 |
| 227 | 1433 |
| 228 | 1439 |
| 229 | 1447 |
| 230 | 1451 |
| 231 | 1453 |
| 232 | 1459 |
| 233 | 1471 |
| 234 | 1481 |
| 235 | 1483 |
| 236 | 1487 |
| 237 | 1489 |
| 238 | 1493 |
| 239 | 1499 |
| 240 | 1511 |
| 241 | 1523 |
| 242 | 1531 |
| 243 | 1543 |
| 244 | 1549 |
| 245 | 1553 |
| 246 | 1559 |
| 247 | 1567 |
| 248 | 1571 |
| 249 | 1579 |
| 250 | 1583 |
| 251 | 1597 |
| 252 | 1601 |
| 253 | 1607 |
| 254 | 1609 |
| 255 | 1613 |
| 256 | 1619 |
| 257 | 1621 |
| 258 | 1627 |
| 259 | 1637 |
| 260 | 1657 |
| 261 | 1663 |
| 262 | 1667 |
| 263 | 1669 |
| 264 | 1693 |
| 265 | 1697 |
| 266 | 1699 |
| 267 | 1709 |
| 268 | 1721 |
| 269 | 1723 |
| 270 | 1733 |
| 271 | 1741 |
| 272 | 1747 |
| 273 | 1753 |
| 274 | 1759 |
| 275 | 1777 |
| 276 | 1783 |
| 277 | 1787 |
| 278 | 1789 |
| 279 | 1801 |
| 280 | 1811 |
| 281 | 1823 |
| 282 | 1831 |
| 283 | 1847 |
| 284 | 1861 |
| 285 | 1867 |
| 286 | 1871 |
| 287 | 1873 |
| 288 | 1877 |
| 289 | 1879 |
| 290 | 1889 |
| 291 | 1901 |
| 292 | 1907 |
| 293 | 1913 |
| 294 | 1931 |
| 295 | 1933 |
| 296 | 1949 |
| 297 | 1951 |
| 298 | 1973 |
| 299 | 1979 |
| 300 | 1987 |
| 301 | 1993 |
| 302 | 1997 |
| 303 | 1999 |
| 304 | 2003 |
| 305 | 2011 |
| 306 | 2017 |
| 307 | 2027 |
| 308 | 2029 |
| 309 | 2039 |
| 310 | 2053 |
| 311 | 2063 |
| 312 | 2069 |
| 313 | 2081 |
| 314 | 2083 |
| 315 | 2087 |
| 316 | 2089 |
| 317 | 2099 |
| 318 | 2111 |
| 319 | 2113 |
| 320 | 2129 |
| 321 | 2131 |
| 322 | 2137 |
| 323 | 2141 |
| 324 | 2143 |
| 325 | 2153 |
| 326 | 2161 |
| 327 | 2179 |
| 328 | 2203 |
| 329 | 2207 |
| 330 | 2213 |
| 331 | 2221 |
| 332 | 2237 |
| 333 | 2239 |
| 334 | 2243 |
| 335 | 2251 |
| 336 | 2267 |
| 337 | 2269 |
| 338 | 2273 |
| 339 | 2281 |
| 340 | 2287 |
| 341 | 2293 |
| 342 | 2297 |
| 343 | 2309 |
| 344 | 2311 |
| 345 | 2333 |
| 346 | 2339 |
| 347 | 2341 |
| 348 | 2347 |
| 349 | 2351 |
| 350 | 2357 |
| 351 | 2371 |
| 352 | 2377 |
| 353 | 2381 |
| 354 | 2383 |
| 355 | 2389 |
| 356 | 2393 |
| 357 | 2399 |
| 358 | 2411 |
| 359 | 2417 |
| 360 | 2423 |
| 361 | 2437 |
| 362 | 2441 |
| 363 | 2447 |
| 364 | 2459 |
| 365 | 2467 |
| 366 | 2473 |
| 367 | 2477 |
| 368 | 2503 |
| 369 | 2521 |
| 370 | 2531 |
| 371 | 2539 |
| 372 | 2543 |
| 373 | 2549 |
| 374 | 2551 |
| 375 | 2557 |
| 376 | 2579 |
| 377 | 2591 |
| 378 | 2593 |
| 379 | 2609 |
| 380 | 2617 |
| 381 | 2621 |
| 382 | 2633 |
| 383 | 2647 |
| 384 | 2657 |
| 385 | 2659 |
| 386 | 2663 |
| 387 | 2671 |
| 388 | 2677 |
| 389 | 2683 |
| 390 | 2687 |
| 391 | 2689 |
| 392 | 2693 |
| 393 | 2699 |
| 394 | 2707 |
| 395 | 2711 |
| 396 | 2713 |
| 397 | 2719 |
| 398 | 2729 |
| 399 | 2731 |
| 400 | 2741 |
| 401 | 2749 |
| 402 | 2753 |
| 403 | 2767 |
| 404 | 2777 |
| 405 | 2789 |
| 406 | 2791 |
| 407 | 2797 |
| 408 | 2801 |
| 409 | 2803 |
| 410 | 2819 |
| 411 | 2833 |
| 412 | 2837 |
| 413 | 2843 |
| 414 | 2851 |
| 415 | 2857 |
| 416 | 2861 |
| 417 | 2879 |
| 418 | 2887 |
| 419 | 2897 |
| 420 | 2903 |
| 421 | 2909 |
| 422 | 2917 |
| 423 | 2927 |
| 424 | 2939 |
| 425 | 2953 |
| 426 | 2957 |
| 427 | 2963 |
| 428 | 2969 |
| 429 | 2971 |
| 430 | 2999 |
| 431 | 3001 |
| 432 | 3011 |
| 433 | 3019 |
| 434 | 3023 |
| 435 | 3037 |
| 436 | 3041 |
| 437 | 3049 |
| 438 | 3061 |
| 439 | 3067 |
| 440 | 3079 |
| 441 | 3083 |
| 442 | 3089 |
| 443 | 3109 |
| 444 | 3119 |
| 445 | 3121 |
| 446 | 3137 |
| 447 | 3163 |
| 448 | 3167 |
| 449 | 3169 |
| 450 | 3181 |
| 451 | 3187 |
| 452 | 3191 |
| 453 | 3203 |
| 454 | 3209 |
| 455 | 3217 |
| 456 | 3221 |
| 457 | 3229 |
| 458 | 3251 |
| 459 | 3253 |
| 460 | 3257 |
| 461 | 3259 |
| 462 | 3271 |
| 463 | 3299 |
| 464 | 3301 |
| 465 | 3307 |
| 466 | 3313 |
| 467 | 3319 |
| 468 | 3323 |
| 469 | 3329 |
| 470 | 3331 |
| 471 | 3343 |
| 472 | 3347 |
| 473 | 3359 |
| 474 | 3361 |
| 475 | 3371 |
| 476 | 3373 |
| 477 | 3389 |
| 478 | 3391 |
| 479 | 3407 |
| 480 | 3413 |
| 481 | 3433 |
| 482 | 3449 |
| 483 | 3457 |
| 484 | 3461 |
| 485 | 3463 |
| 486 | 3467 |
| 487 | 3469 |
| 488 | 3491 |
| 489 | 3499 |
| 490 | 3511 |
| 491 | 3517 |
| 492 | 3527 |
| 493 | 3529 |
| 494 | 3533 |
| 495 | 3539 |
| 496 | 3541 |
| 497 | 3547 |
| 498 | 3557 |
| 499 | 3559 |
| 500 | 3571 |
| 501 | 3581 |
| 502 | 3583 |
| 503 | 3593 |
| 504 | 3607 |
| 505 | 3613 |
| 506 | 3617 |
| 507 | 3623 |
| 508 | 3631 |
| 509 | 3637 |
| 510 | 3643 |
| 511 | 3659 |
| 512 | 3671 |
| 513 | 3673 |
| 514 | 3677 |
| 515 | 3691 |
| 516 | 3697 |
| 517 | 3701 |
| 518 | 3709 |
| 519 | 3719 |
| 520 | 3727 |
| 521 | 3733 |
| 522 | 3739 |
| 523 | 3761 |
| 524 | 3767 |
| 525 | 3769 |
| 526 | 3779 |
| 527 | 3793 |
| 528 | 3797 |
| 529 | 3803 |
| 530 | 3821 |
| 531 | 3823 |
| 532 | 3833 |
| 533 | 3847 |
| 534 | 3851 |
| 535 | 3853 |
| 536 | 3863 |
| 537 | 3877 |
| 538 | 3881 |
| 539 | 3889 |
| 540 | 3907 |
| 541 | 3911 |
| 542 | 3917 |
| 543 | 3919 |
| 544 | 3923 |
| 545 | 3929 |
| 546 | 3931 |
| 547 | 3943 |
| 548 | 3947 |
| 549 | 3967 |
| 550 | 3989 |
| 551 | 4001 |
| 552 | 4003 |
| 553 | 4007 |
| 554 | 4013 |
| 555 | 4019 |
| 556 | 4021 |
| 557 | 4027 |
| 558 | 4049 |
| 559 | 4051 |
| 560 | 4057 |
| 561 | 4073 |
| 562 | 4079 |
| 563 | 4091 |
| 564 | 4093 |
| 565 | 4099 |
| 566 | 4111 |
| 567 | 4127 |
| 568 | 4129 |
| 569 | 4133 |
| 570 | 4139 |
| 571 | 4153 |
| 572 | 4157 |
| 573 | 4159 |
| 574 | 4177 |
| 575 | 4201 |
| 576 | 4211 |
| 577 | 4217 |
| 578 | 4219 |
| 579 | 4229 |
| 580 | 4231 |
| 581 | 4241 |
| 582 | 4243 |
| 583 | 4253 |
| 584 | 4259 |
| 585 | 4261 |
| 586 | 4271 |
| 587 | 4273 |
| 588 | 4283 |
| 589 | 4289 |
| 590 | 4297 |
| 591 | 4327 |
| 592 | 4337 |
| 593 | 4339 |
| 594 | 4349 |
| 595 | 4357 |
| 596 | 4363 |
| 597 | 4373 |
| 598 | 4391 |
| 599 | 4397 |
| 600 | 4409 |
| 601 | 4421 |
| 602 | 4423 |
| 603 | 4441 |
| 604 | 4447 |
| 605 | 4451 |
| 606 | 4457 |
| 607 | 4463 |
| 608 | 4481 |
| 609 | 4483 |
| 610 | 4493 |
| 611 | 4507 |
| 612 | 4513 |
| 613 | 4517 |
| 614 | 4519 |
| 615 | 4523 |
| 616 | 4547 |
| 617 | 4549 |
| 618 | 4561 |
| 619 | 4567 |
| 620 | 4583 |
| 621 | 4591 |
| 622 | 4597 |
| 623 | 4603 |
| 624 | 4621 |
| 625 | 4637 |
| 626 | 4639 |
| 627 | 4643 |
| 628 | 4649 |
| 629 | 4651 |
| 630 | 4657 |
| 631 | 4663 |
| 632 | 4673 |
| 633 | 4679 |
| 634 | 4691 |
| 635 | 4703 |
| 636 | 4721 |
| 637 | 4723 |
| 638 | 4729 |
| 639 | 4733 |
| 640 | 4751 |
| 641 | 4759 |
| 642 | 4783 |
| 643 | 4787 |
| 644 | 4789 |
| 645 | 4793 |
| 646 | 4799 |
| 647 | 4801 |
| 648 | 4813 |
| 649 | 4817 |
| 650 | 4831 |
| 651 | 4861 |
| 652 | 4871 |
| 653 | 4877 |
| 654 | 4889 |
| 655 | 4903 |
| 656 | 4909 |
| 657 | 4919 |
| 658 | 4931 |
| 659 | 4933 |
| 660 | 4937 |
| 661 | 4943 |
| 662 | 4951 |
| 663 | 4957 |
| 664 | 4967 |
| 665 | 4969 |
| 666 | 4973 |
| 667 | 4987 |
| 668 | 4993 |
| 669 | 4999 |
There are 669 prime numbers between 1 to 5000 and 2 is the first prime number. Why is 1 not a prime number? 1 is not a prime number because it has only one factor, namely 1.
Distinctive Features of Prime Numbers
- Uniqueness: Each positive integer greater than 1 can be uniquely represented as a product of prime numbers, irrespective of the order of the factors. This principle is recognized as the Fundamental Theorem of Arithmetic.
- Infinitude of Primes: The set of prime numbers is infinite, as demonstrated by the ancient Greek mathematician Euclid around 300 BCE. His proof is a classic example of a proof by contradiction.
- Prime Factorization: The process of determining the prime factorization of a number involves breaking it down into a product of prime factors. This technique is essential in various mathematical operations, including simplifying fractions and finding the greatest common divisor (GCD) of two numbers.
- Twin Primes: Twin primes are pairs of prime numbers with a difference of 2, such as (3, 5), (11, 13), and (17, 19). The Twin Prime Conjecture suggests an infinite number of such pairs, although it remains unproven.
- Prime Number Theorem: Formulated by mathematicians like Jacques Hadamard and Charles Jean de la Vallée-Poussin, the Prime Number Theorem describes the asymptotic distribution of prime numbers. It estimates how the density of prime numbers decreases as numbers grow larger.
- Prime Numbers and Cryptography: Prime numbers play a pivotal role in modern cryptography, particularly in algorithms like RSA that depend on the challenge of factoring the product of two large prime numbers for secure internet communication.
- Mersenne Primes: Mersenne primes are primes expressible in the form 2p – 1, where p is also a prime number. These primes exhibit a fascinating connection to perfect numbers and are extensively studied for their mathematical properties.
- Prime Sieves: Prime sieves are algorithms designed for efficiently identifying all prime numbers up to a specified limit. The Sieve of Eratosthenes, a well-known prime sieve, is a straightforward method for prime identification.
- Prime Gap: The prime gap refers to the difference between consecutive prime numbers. Despite the seeming randomness in prime distribution, there are still unresolved questions about the upper bounds of prime gaps.
- Prime Number Patterns: While prime numbers themselves lack a predictable pattern (referred to as the "randomness" of primes), there are conjectures and patterns related to their distribution. However, proving these conjectures remains a challenging endeavor.
Prime numbers continue to be a fertile area of exploration in mathematics, captivating researchers worldwide due to their distinct properties and far-reaching implications across various fields.
Also Check

0 Comments